浙江区域台风暴雨多模式QPF融合技术应用试验
作者:
作者简介:

姚梦颖,女,硕士,助理工程师,主要从事集合预报释用方法研究,yaomy1095@163.com

中图分类号:

P445.1;P458.3

基金项目:

浙江省气象局科技项目(2022YB07);灾害天气国家重点实验室开放课题(2021LASW-B21)


请扫码阅读

Application experiment of multi-model QPF fusion method for Zhejiang typhoon rainstorm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    基于欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)台风路径集合预报逐12 h以及中国气象局中尺度天气数值预报系统(CMA-MESO 3 km、CMA-MESO 10 km)、中国气象局上海数值预报模式系统(CMA-SH9)和浙江省中尺度数值预报业务系统(ZJWARMS)逐6 h预报资料,以2021年台风“烟花”“灿都”影响下浙江区域6 h暴雨(R≥25 mm)为研究对象,对台风降水多模式定量降水预报(quantitative precipitation forecast,QPF)融合技术在浙江台风暴雨预报中的应用效果进行评估。分析结果表明:(1)针对两次台风降水过程,4家区域模式对浙江暴雨预报过高估计,而台风降水多模式QPF融合技术能够有效提高浙江暴雨预报的公平技巧评分(equitable threat score,ETS)、降低暴雨空报率。(2)与台风“烟花”暴雨预报效果最佳的CMA-MESO 3 km相比,台风降水多模式QPF融合技术对暴雨和大暴雨的预报命中率(probability of detection,POD)分别提高18.80%和23.41%,ETS分别提高24.37%和25.76%;与台风“灿都”暴雨预报效果最佳的ZJWARMS相比,台风降水多模式QPF融合技术对暴雨和大暴雨的预报ETS分别提高23.08%和3.23%;且两次过程中该方法的暴雨预报POD和ETS均高于同期浙江业务应用的客观预报。(3)在各家区域模式的台风路径预报差异较大的情况下,采用台风降水多模式QPF融合技术能显著提高台风暴雨预报准确率。

    Abstract:

    Taking Typhoon In-Fa (2106) and Chanthu (2114) as examples, this study investigates whether the multi-model QPF (quantitative precipitation forecast) fusion method can add values to the predicted 6-h heavy precipitation (R≥25 mm) of typhoon rainstorm in Zhejiang. The model forecasts include precipitation and typhoon track from ECMWF (European Centre for Medium-Range Weather Forecasts) typhoon track ensemble, CMA-MESO 3 km, CMA-MESO 10 km, CMA-SH9, and ZJWARMS (Zhejiang WRF ADAS Real-time Modeling System). The analysis results are listed as follows. (1) For the two typhoon precipitation processes, all of the 4 regional models overestimate the rainstorm in Zhejiang. In contrast, the multi-model QPF fusion method can effectively improve the ETS (equitable threat score) and reduce the false alarm ratio of rainstorm forecast. (2) Compared with the best model for forecasting Typhoon In-Fa (2106), i.e., CMA-MESO 3 km, the multi-model QPF fusion method can increase the POD (probability of detection) of rainstorm and heavy rainstorm by 18.80% and 23.41%, and increase the ETS of rainstorm and heavy rainstorm by 24.37% and 25.76%, respectively. Similarly, compared with the best model for forecasting Typhoon Chanthu (2114), i.e., ZJWARMS, the new method also improves the ETS of rainstorm and heavy rainstorm by 23.08% and 3.23%, respectively. And both of the method’s ETS and the POD are higher than the operational objective forecast of Zhejiang in the two case studies. (3) Furthermore, when there are large differences in the typhoon track forecasts between several regional models, the multi-model QPF fusion method can significantly increase the accuracy of typhoon rainstorm forecast.

    参考文献
    [1] 伍远康,刘德辅.浙江省登陆台风暴雨落区研究[J].水文,2009,29(2):81-83.
    [2] 钱传海,端义宏,麻素红,等.我国台风业务现状及其关键技术[J].气象科技进展,2012,2(5):36-43.
    [3] 任福民,杨慧.1949年以来我国台风暴雨及其预报研究回顾与展望[J].暴雨灾害,2019,38(5):526-540.
    [4] 许映龙,张玲,高拴柱.我国台风预报业务的现状及思考[J].气象,2010,36(7):43-49.
    [5] 陈博宇,代刊,唐健,等.基于多模式QPF融合的台风暴雨预报后处理技术研究及应用试验[J].气象,2020,46(10):1261-1271.
    [6] 陈联寿,孟智勇,丛春华.台风暴雨落区研究综述[J].海洋气象学报,2017,37(4):1-7.
    [7] 江漫,漆梁波.1959—2012年我国极端降水台风的气候特征分析[J].气象,2016,42(10):1230-1236.
    [8] 杜钧,李俊.集合预报方法在暴雨研究和预报中的应用[J].气象科技进展,2014,4(5):6-20.
    [9] 李俊,杜钧,陈超君.“频率匹配法”在集合降水预报中的应用研究[J].气象,2015,41(6):674-684.
    [10] CLARK A J,GALLUS W A Jr,CHEN T C.Contributions of mixed physics versus perturbed initial/lateral boundary conditions to ensemble-based precipitation forecastskill[J].Mon Wea Rev,2008,136(6):2140-2156.
    [11] EBERT E E.Ability of a poor man’s ensemble to predict the probability and distribution of precipitation[J].Mon Wea Rev,2001,129(10):2461-2480.
    [12] HAMILL T M,ENGLE E,MYRICK D,et al.The U.S.national blend of models for statisticalpostprocessing of probability of precipitation and deterministic precipitation amount[J].Mon Wea Rev,2017,145(9):3441-3463.
    [13] SCHWARTZ C S,ROMINE G S,SMITH K R,et al.Characterizing and optimizing precipitation forecasts from a convection-permitting ensemble initialized by a mesoscale ensemble Kalman filter[J].Wea Forecasting,2014,29(6):1295-1318.
    [14] 周迪,陈静,陈朝平,等.暴雨集合预报-观测概率匹配订正法在四川盆地的应用研究[J].暴雨灾害,2015,34(2):97-104.
    [15] LIU J Q,LI Z L,WANG Q Q.Quantitative precipitation forecasting using an improved probability-matching method and its application to a typhoon event[J].Atmosphere,2021,12(10):1346.
    [16] FANG X Q,KUO Y H.Improving ensemble-based quantitative precipitation forecasts for topography-enhanced typhoon heavy rainfall over Taiwan with a modified probability-matching technique[J].Mon Wea Rev,2013,141(11):3908-3932.
    [17] 陈博宇,郭云谦,代刊,等.面向台风暴雨的集合预报成员优选订正技术研究及应用试验[J].气象,2016,42(12):1465-1475.
    [18] 罗玲,娄小芬,傅良,等.ECMWF极端降水预报指数在华东台风暴雨中的应用研究[J].气象,2019,45(10):1382-1391.
    [19] 王海平,董林,许映龙,等.台风“烟花”的主要特点和路径预报难点分析[J].海洋气象学报,2022,42(1):83-91.
    [20] 向纯怡,高拴柱,刘达.2021年西北太平洋和南海台风活动概述[J].海洋气象学报,2022,42(1):39-49.
    [21] 钱奇峰,张长安,高拴柱,等.台风路径集合预报的实时订正技术研究[J].热带气象学报,2014,30(5):905-910.
    相似文献
    引证文献
引用本文

姚梦颖,吴梦雯,刘建勇,娄小芬,郑林晔.浙江区域台风暴雨多模式QPF融合技术应用试验[J].海洋气象学报,2023,43(2):76-87.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
文章历史
  • 收稿日期:2022-05-26
  • 最后修改日期:2023-01-01
  • 在线发布日期: 2023-06-08
  • 出版日期: 2023-05-30