基于多种机器学习模型的夏季北冰洋海雾卫星检测方法研究
作者:
作者单位:

作者简介:

付玉琴,女,硕士研究生,主要从事海雾卫星遥感研究,fuyq36@163.com。

通讯作者:

中图分类号:

P47;TP181

基金项目:

国家重点研发计划项目(2019YFC1510102);国家自然科学基金项目(U2342214,41975024)


请扫码阅读

Summer sea fog detection over the Arctic Ocean based on satellite data using several machine learning models
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用2014—2018年6—9月Aqua/MODIS提供的光谱数据、海面温度数据及其他辅助数据,基于CALIOP L2 VFM产品中云底高度提取的海雾、云和海表标签,建立3类样本数据集。结合使用K折交叉验证法、网格搜索法和粒子群优化算法训练随机森林(random forest,RF)、支持向量机(support vector machine,SVM)、多层感知机(multilayer perceptron,MLP)和全卷积神经网络(fully convolutional network,FCN)4种不同的机器学习模型,对比模型在北冰洋夏季海雾检测中的表现。结果显示,RF、SVM、MLP和FCN均表现出一定的海雾检测能力,检出率(probability of detection,POD)均超过70%。其中,FCN表现出最稳健的综合性能,POD达到79.91%,虚警率达到较低的24.90%,关键成功指数达到63.17%。

    Abstract:

    Utilizing the spectral data, sea surface temperature, and other auxiliary data provided by Aqua/MODIS between June and September from 2014 to 2018, three categories of sample datasets are established, in which samples are labled as sea fog, cloud, and sea surface based on the cloud base height extracted from CALIOP/VFM. Combining K-fold cross-validation, grid search, and particle swarm optimization techniques, 4 different machine learning models are trained, including random forest (RF), support vector machine (SVM), multilayer perceptron (MLP), and fully convolutional networks (FCN). The performance of these models in the summer sea fog detection over the Arctic Ocean is compared. The results show that RF, SVM, MLP, and FCN all exhibit some capability of sea fog detection, with probability of detection (POD) exceeding 70%. Among them, FCN shows the best overall performance, achieving a POD of 79.91% and a low false alarm rate (FAR) of 24.90%, resulting in a critical success index (CSI)of 63.17%.

    参考文献
    相似文献
    引证文献
引用本文

付玉琴,衣立,黎梦雅,程雪盈.基于多种机器学习模型的夏季北冰洋海雾卫星检测方法研究[J].海洋气象学报,2024,(1):14-23.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
文章历史
  • 收稿日期:2023-10-04
  • 最后修改日期:2024-01-08
  • 录用日期:
  • 在线发布日期: 2024-03-05
  • 出版日期:
关闭

“星载风场探测技术专题”征稿通知

关闭