Abstract:Based on the Tropical Cyclone Yearbook of China Meteorological Administration, FY-2D 0.1°×0.1° cloud top brightness temperature data, hourly rainfall observations from automatic weather stations(AWS), conventional observational data and the NCEP/NCAR reanalysis data, the frontogenesis function is used to carry on the diagnostic analysis to the features of rainfall during typhoon Matmo(1410) affecting Liaodong Peninsula and Shandong Peninsula. Results show that:1)Matmo experienced extratropical transition when approaching westerly trough and frontogenesis zones, which is found in the lower layer of typhoon circulation. During the Matmo impacts on Liaodong Peninsula and Shandong Peninsula, there is an interaction of low pressure circulation and westerly trough. The characteristics are different between the northeastern frontal zone and the western frontal zone. The former has warm front feature and the later has the cold front feature. Both of the front zones move eastward. The frontogenesis zone in ring form that is wrapped up the typhoon center does not appear in the lower layer of typhoon circulation. The strong frontogenesis appears in the lower layer at the beginning, then the frontogenesis area in higher layer propagates downward, but it does not coincided with the lower layer cold front, weakening the frontogenesis intensity of lower layer cold front. 2)Both of the precipitation over Shandong Peninsula and Liaodong peninsula appear in the frontogenesis process of the typhoon low pressure circulation, but the precipitation in Shandong Peninsula is much more than that in Liaodong Peninsula. The close relationships between the precipitation and the frontogenesis are found. The frontogenesis and the ascending motion in Shandong Peninsula are stronger than those in Liaodong Peninsula, resulting in more severe precipitation correspondingly. 3)The strong rain belt is closely related to the thermal advection activities in the typhoon circulation, and the joint area of warm and cold air advection in the lower layer has good tracing effect on heavy rainfall. Shandong Peninsula always locates in the joint area of warm and cold air advection in the lower layer, possessing the remarkable baroclinic instability and the deep vertical motion, and the strong precipitation occurs in the warm air advection region of cold front zone. When it changes from cold advection to warm advection in the lower layer in Liaodong Peninsula, the strong rainfall and the convection activity mainly occurs in the northeast part of Liaodong Peninsula.