基于ANUSPLIN的京津冀区域逐日气温格点数据集建立方法研究
作者:
作者单位:

作者简介:

刘焕莉,女,硕士,工程师,主要从事气象资料处理与分析研究,524221796@qq.com。

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2018YFF0300101)


请扫码阅读

Research on method of establishing Beijing-Tianjin-Hebei Daily Air Temperature Grid Data Set based on ANUSPLIN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为建立一个高精度、高空间分辨率的逐日气温格点数据集,满足公共气象服务对于精确信息及实时信息的需要,利用2018年6—8月京津冀区域以及临近省区共3 974个国家级及区域气象观测站质控后的逐日气温资料,采用ANUSPLIN软件对逐日气温数据进行空间内插,得到了京津冀区域逐日气温格点数据集(0.01°×0.01°),并分别利用反距离权重插值法、普通克里金插值法、样条函数法对逐日气温数据进行空间插值,采用相关系数(Corr)、平均绝对误差(MAE)、平均相对误差(MRE)等作为评估指标来检验插值精度。结果表明:1)ANUSPLIN软件满足了空间插值对精度及曲面平滑度的要求,能直观体现京津冀区域气温由北向南递增的空间分布特征;2)4种插值方法中,基于ANUSPLIN软件的插值结果最优,相关系数平均达0.97,其样本误差在1 ℃之内占比为90.59%,MAE为0.46 ℃,MRE为1.81%;3)插值误差较大的区域位于冀北高原、燕山丘陵及太行山脉一带,高海拔、低站点密度等是造成插值误差的主要原因。基于ANUSPLIN插值方法建立的逐日气温格点数据集具有分辨率高、空间插值误差小的优势,ANUSPLIN对气温的空间分布具有较好的预测能力。

    Abstract:

    In order to establish a daily air temperature grid data set of high precision and high spatial resolution to meet the need of public meteorological services for accurate and real-time data, the Beijing-Tianjin-Hebei Daily Air Temperature Grid Data Set (0.01°×0.01°) is obtained by spatial interpolation using ANUSPLIN based on the quality controlled daily temperature of 3 974 national and regional meteorological stations in Beijing-Tianjin-Hebei region and neighboring provinces from June to August 2018. The spatial interpolation of daily temperature data is also conducted using the IDW (inverse distance weighted), OK (ordinary kriging), and SPLINE (spline function) methods, and correlation coefficient (Corr), mean absolute error (MAE), and mean relative error (MRE) are selected as indicators to evaluate the interpolation accuracy. The results are as follows. 1) ANUSPLIN meets the requirements of spatial interpolation for accuracy and smoothness and can visually reflect the spatial distribution of temperature increasing from north to south in Beijing-Tianjin-Hebei region. 2) Among the 4 interpolation methods, the interpolation result based on ANUSPLIN is the best as the mean correlation coefficient is 0.97, the sample error within 1℃ accounts for 90.59%, MAE is 0.46 ℃, and MRE is 1.81%. 3) The regions with large interpolation errors are located in the plateau of northern Hebei Province, hilly area of Yanshan Mountains, and Taihang Mountains. High altitude and low density of stations are the main reasons for the interpolation errors. In summary, the daily air temperature grid data set using the interpolation method based on ANUSPLIN has the advantages of high resolution and low spatial interpolation error, and ANUSPLIN performs better in predicting the spatial distribution of air temperature.

    参考文献
    相似文献
    引证文献
引用本文

刘焕莉,范增禄,韩明稚,田国强.基于ANUSPLIN的京津冀区域逐日气温格点数据集建立方法研究[J].海洋气象学报,2020,40(3):111-120.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
文章历史
  • 收稿日期:2020-03-25
  • 最后修改日期:2020-05-29
  • 录用日期:
  • 在线发布日期: 2020-10-20
  • 出版日期:
关闭

“星载风场探测技术专题”征稿通知

关闭