山东气溶胶光学厚度时空分布及其与地面大气污染物质量浓度的相关性分析
作者:
作者单位:

作者简介:

吴炜,男,博士,正高级工程师,主要从事数值预报、环境气象、海洋气象研究,wuwei_sd@163.com。丛春华,女,博士,正高级工程师,主要从事台风和环境气象研究,cch513@163.com。

通讯作者:

中图分类号:

基金项目:

山东省重点研发计划项目(2016GSF117025);环渤海区域科技协同创新基金项目(QYXM202007);华东区域气象科技协同创新基金合作项目(基于葵花-8卫星的陆地气溶胶光学厚度反演研究);山东省气象科学研究所数值天气预报应用技术开放研究基金项目 (SDQXKF2014Z06)


请扫码阅读

Study on spatial and temporal distribution of AOT and its correlation with mass concentrations of ground-level atmospheric pollutants in Shandong
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于卫星的气溶胶光学厚度(aerosol optical thickness,AOT)是研究大气污染程度及时空变化的重要参考,由于大气污染物排放特征、地理和气候背景不同,不同区域AOT的时空分布及其与地面大气污染物质量浓度的相关性存在一定的差异。选取了2017年7月—2020年7月山东89个国家环境空气质量监测站数据、日本宇宙航空研究开发机构(Japan Aerospace Exploration Agency,JAXA)发布的葵花8号和9号气象卫星(Himawari-8/9)AOT产品、欧洲中期天气预报中心(European Center for Medium-Range Weather Forecasts,ECMWF)的ERA5再分析数据产品,研究了山东地区卫星AOT时空分布特征,AOT与地面污染物质量浓度的相关性,并得出了以下结论:1)山东存在两个主要的AOT低值区,分别位于鲁中山区一带,半岛丘陵并延伸到东部沿海一带,低值区的分布没有明显的季节变化;山东AOT年平均的高值区主要分布在山东西部、南部与外省接壤附近地区,以及渤海南部至莱州湾沿岸一带,在分析气溶胶跨省传输时值得关注。不同季节AOT的高值区分布存在差异。2)山东AOT白天变化呈现双峰结构,08时由峰值逐渐下降,11时转为上升,14时达全天最大值0.608;AOT的日变化趋势与细颗粒物(PM2.5)、O3等大气污染物质量浓度变化明显不同,是影响其相关性的重要因素。AOT月际变化中,存在两个显著的峰值6月(0.648)和10月(0.622),2月AOT最低。AOT的季节变化与地面污染物质量浓度的季节变化呈现一定的反位相特征。3)总体上AOT与PM2.5、O3等主要大气污染物质量浓度的相关性不高,一年之中,6月AOT与污染物的相关程度最低,1月的相关性最高;15—17时是AOT与污染物相关性最强的时间段,而10时相关性最差。单凭AOT难以定量反映污染物的分布特征,使用卫星开展地面大气污染监测分析还需纳入更多的因子进行分析。

    Abstract:

    The satellite-based aerosol optical thickness (AOT) is a major reference for studying air pollution and its spatial and temporal variations. As a result of distinct air pollutant emission, geography, and climate background, the spatial and temporal distribution of AOT and its correlations with mass concentrations of ground-level pollutants are different in different areas. In this study, selected data of 89 national environment monitoring stations in Shandong from July 2017 to July 2020, Himawari-8/9 AOT products issued by Japan Aerospace Exploration Agency (JAXA), and ERA5 reanalysis data issued by European Center for Medium-Range Weather Forecasts (ECMWF) are analyzed to explore the spatial and temporal distribution of AOT in Shandong and its correlations with mass concentrations of groundlevel pollutants. The results are shown below. 1) There are two major low AOT areas in Shandong, distributed around the mountainous areas of central Shandong and Jiaodong Peninsula with an extension to the east coast, and the distribution of low AOT areas presents few seasonal variations; high AOT in Shandong mainly covers areas in the west and south of Shandong which are in conjunction with other provinces and areas from southern Bohai to the coast of Laizhou Bay, which is noteworthy when analyzing the interprovincial transport of aerosol. The distribution of high AOT areas is different in different seasons. 2) The diurnal variation of AOT in Shandong, which declines from the peak at 08:00, goes up at 11:00, and reaches its daily maximum (0.608) at 14:00, has a bimodal distribution; the diurnal variation of AOT is quite different with that of fine particulate matter (PM2.5) and O3, which is an important factor affecting the correlations. For monthly distribution, there are two peak values obtained in July (0.648) and October (0.622), while AOT in February has the minimum value. There is to some extent contradictory seasonality between AOT and mass concentrations of ground-level pollutants. 3) In general, the correlations between AOT and mass concentrations of ground-level pollutants, such as PM2.5 and O3, are weak, while June sees the lowest and January the highest correlation coefficient values. AOT has the highest correlation with mass concentrations of pollutants between 15:00 and 17:00 and the lowest correlation coefficient at 10:00. This research shows it is difficult to quantitatively reflect the distribution of ground-level pollutants only based on AOT, and more factors need to be considered in monitoring and analyzing ground-level pollutions via satellite remote sensing.

    参考文献
    相似文献
    引证文献
引用本文

吴炜,丛春华,郑怡.山东气溶胶光学厚度时空分布及其与地面大气污染物质量浓度的相关性分析[J].海洋气象学报,2021,41(1):58-67.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
文章历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-04-14
  • 出版日期: 2021-02-28
关闭

“星载风场探测技术专题”征稿通知

关闭