基于自注意力和稠密卷积改进ConvLSTM的雷达回波外推方法
DOI:
作者:
作者单位:

安徽省阜阳市气象局

作者简介:

通讯作者:

中图分类号:

P412.25;P457.6;TP183

基金项目:


请扫码阅读

Radar echo extrapolation method based on self-attention and dense convolution improved ConvLSTM
Author:
Affiliation:

Fuyang Meteorological Bureau of Anhui,Anhui Fuyang

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有雷达回波外推模型存在长时序回波外推模糊失真和强回波预测准确率较低等问题,本文利用安徽省2016年5-9月的多普勒雷达组合反射率拼图数据,设计了一种基于自注意力和稠密卷积改进卷积长短期记忆网络 (Convolutional Long Short-Term Memory Network,ConvLSTM)的雷达回波外推方法。模型以ConvLSTM为基础,在每个单元结构以及编解码器中间融入自注意力机制,强化模型对于特征长时空间依赖的提取能力,同时用稠密连接卷积代替普通卷积,提高模型的特征重用能力。实验利用过去1h雷达回波图像预测未来2h雷达回波图像,并与改进前的ConvLSTM进行对比证明了提出的模型能够提高雷达回波外推的准确率。

    Abstract:

    Aiming at the existing problems of fuzzy distortion and low accuracy in predicting strong echoes in existing radar echo extrapolation models, this paper designs a radar echo extrapolation method based on self-attention and dense convolution improved convolutional long short-term memory network (ConvLSTM) by using the composite reflectivity mosaic image of Doppler radars data from Anhui Province from May to September 2016. Based on ConvLSTM, the model incorporates self-attention mechanism into each cell and encoder-decoder to enhance the ability of extracting features with long-term spatial dependence. Meanwhile, the model uses dense convolution instead of common convolution to improve the feature reuse ability. The experiment used the past 1h radar echo image to predict the future 2h radar echo image, and compared with the ConvLSTM before the improvement, proved that the proposed model can improve the accuracy of radar echo extrapolation.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
文章历史
  • 收稿日期:2024-05-14
  • 最后修改日期:2024-07-21
  • 录用日期:2024-08-23
  • 在线发布日期:
  • 出版日期:

“海雾专题”征稿通知

关闭