基于GEE的多特征优选设施农业类型信息提取
DOI:
作者:
作者单位:

1.山东省气象防灾减灾重点实验室;2.喀什地区气象局

作者简介:

通讯作者:

中图分类号:

P237

基金项目:

山东省自然科学(ZR2020MF130);山东省气象局科研项目(2023sdqxz12,2021sdqxz03);山东省气候中心创新项目(2023QHCX04)


请扫码阅读

Multi-feature Selection and Extraction of Facility Agriculture Types Based on GEE
Author:
Affiliation:

1.Key Laboratory for Meteorological Disaster Prevention and Mitigation of Shandong;2.Kashgar Meteorological Bureau

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确获取设施农业的空间分布对农业发展规划、灾害预警、产量估算等方面具有重要意义。为对不同设施农业类型信息进行识别分类和精细化提取,以潍坊市不同类型设施农业为研究对象,基于Google Earth Engine(GEE)计算平台,利用Sentinel-1雷达卫星数据、Sentinel-2 光学卫星数据和SRTM DEM数据,提取光谱特征、指数特征、雷达特征、纹理和地形特征共41个特征变量并进行特征优选,其中,纹理特征通过累计差法对比14种不同尺度窗口,计算得到Sentinel-2影像最佳纹理特征。采用随机森林分类算法,根据不同特征设计6种组合方案开展实验,得到潍坊市2023年10m分辨率设施农业空间分布图,探讨不同特征组合对设施农业信息提取精度的影响。结果表明:(1)Sentinel-2提取设施农业的最佳纹理特征窗口是27×27,最佳纹理特征组合为均值、熵、方差、差异性和对比度。(2)在光谱特征、指数特征的基础上加入不同特征对设施农业进行分类,不同类型特征对设施农业提取的有利程度由大到小依次为纹理特征、地形特征、雷达特征,与单一光谱和指数特征相比,纹理特征的引入使得分类精度提升4.81%。(3)特征优选后的方案提取精度最高,不同设施农业类型信息总体精度为91.03%,Kappa系数为0.86。其中,塑料大棚的生产者精度和用户精度分别为92.21%和91.83%;日光温室的生产者精度和用户精度分别为88.54%和89.47%。本研究利用Sentinel系列影像和SRTM DEM地形数据,构建潍坊市不同设施农业类型的遥感提取方法,研究结果可为设施农业灾害风险管理提供决策支撑。

    Abstract:

    Accurately identifying the spatial distribution of facility agriculture is crucial for agricultural development planning, disaster forecasting, and yield estimation. This study focuses on distinguishing and precisely extracting different types of facility agriculture in Weifang City using the Google Earth Engine (GEE) platform. By integrating Sentinel-1 radar data, Sentinel-2 optical data, and SRTM DEM data, 41 feature variables are extracted, including spectral, index, radar, texture, and topographic features. The texture features are optimized by evaluating 14 different scale windows, with the cumulative difference method identifying the optimal texture features for Sentinel-2 imagery. 6 feature combinations are designed using the Random Forest classification algorithm to generate a 10-meter resolution facility agriculture distribution map for Weifang in 2023, and to explore the impact of different feature combinations on classification accuracy. Results show that: (1) The optimal texture window size for extracting facility agriculture using Sentinel-2 is 27×27, with the best texture feature combination including mean, entropy, variance, dissimilarity, and contrast. (2) When different features are added to spectral and index features, the extraction order of importance is texture, topography, and radar, with the introduction of texture improving classification accuracy by 4.81%. (3) The optimized feature selection yields the highest classification accuracy, with an overall accuracy of 91.03% and a Kappa coefficient of 0.86. The producer"s and user"s accuracy for plastic tunnels are 92.21% and 91.83%, respectively, while those for solar greenhouses are 88.54% and 89.47%, respectively. This research provides a remote sensing extraction method for various facility agriculture types, offering valuable decision-making support for facility agriculture disaster risk management.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
文章历史
  • 收稿日期:2024-10-19
  • 最后修改日期:2025-02-22
  • 录用日期:2025-04-11
  • 在线发布日期:
  • 出版日期: