龙卷风监测预报预警技术进展
DOI:
作者:
作者单位:

国家气象中心

作者简介:

通讯作者:

中图分类号:

基金项目:


请扫码阅读

Progress in Technology of Monitoring, Forecasting and Early Warning Tornado
Author:
Affiliation:

National Meteorological Centre

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    强对流天气预报业务是业务预报的难点之一,而龙卷风监测预报预警则是强对流天气预报业务中难点。本文简要总结了美国、欧洲和中国龙卷风监测预报业务的发展历程,重点总结了中气旋龙卷风的监测和短期短时临近预报技术进展。龙卷风时空尺度小,短期短时预报时效只能预报其有利环境条件和中尺度形成机制,强龙卷风指数STP和最大上升气流螺旋度UH分别是短期和短时预报龙卷风的特征物理量。中气旋龙卷风监测依赖于双偏振多普勒天气雷达观测的龙卷风涡旋特征和双偏振量演变特征,这些特征可以监测龙卷风的形成和消散。准线状对流系统产生的龙卷风依然很难直接判识和预警,但该类风暴的中涡旋与龙卷风关系较为密切,已发展了利用垂直风切变和雷达双偏振量特征判识该类风暴中涡旋发展的技术方法。使用物理方法、随机森林或深度学习的龙卷风监测识别和临近预报技术能力显著提升。龙卷风监测预报预警能力依然存在很大不足,未来依然需要更多探测手段提升监测识别能力、深化机理认识、发展超高分辨率数值模式和人工智能技术提升预报预警能力,更要发挥好预报员的主观能动性和关键作用。

    Abstract:

    Severe convective weather forecasting is one of the challenging tasks in forecasting operations, with tornado monitoring and forecasting being particularly difficult within this field. This paper briefly summarizes the history of tornado monitoring and forecasting operations in the United States, Europe and China, focusing on the progress in mesocyclone tornado monitoring, short-range, short-term, and early warning technology. Tornadoes are of a small spatiotemporal scale, and short-range and short-term forecasts can only predict their favorable environmental conditions and mesoscale formation mechanisms, respectively. The significant tornado parameter (STP) and the maximum updrafts helicity (UH) are the effective physical variables for short-range and short-term forecasting tornadoes, respectively. The monitoring of mesocyclone tornadoes relies on the tornadic vortex signatures and polarimetric observations from dual polarization Doppler weather radar, which can monitor the formation and dissipation of tornadoes. Tornadoes produced by quasi-linear convective systems are still difficult to directly identify, but the relationship between mesovortices and tornadoes in such storms is relatively close, and technical methods have been developed to use vertical wind shear and radar dual polarization characteristics to identify the development of mesovortices in such storms. The ability to identify and forecast tornadoes using physical laws, random forests, or deep learning methods has significantly improved. There are still significant shortcomings in the monitoring, forecasting, and early warning capabilities of tornadoes. In future, more observation or detection methods are needed to improve monitoring and identification capabilities, deepen understanding of mechanisms, develop ultra-high resolution numerical weather prediction models and artificial intelligence methods to enhance forecasting and early warning capabilities. It is even more crucial to fully leverage the subjective initiative and pivotal role of forecasters.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
文章历史
  • 收稿日期:2024-12-20
  • 最后修改日期:2025-02-23
  • 录用日期:2025-04-11
  • 在线发布日期:
  • 出版日期: