基于机器学习的西北太平洋海雾预报模型研究
DOI:
作者:
作者单位:

中国海洋大学海洋与大气学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2021YFC3101604)


请扫码阅读

Research on marine fog prediction model in the Northwest Pacific based on machine learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    西北太平洋是全球海雾频率最高的海域之一,也是海上航运的主要通道所在,目前尚无海雾预报产品,研究该区域海雾发生的特征及其预报具有重要意义。本研究基于2013—2023年的国际海洋-大气数据集(International Comprehensive Ocean-Atmosphere Data Set,ICOADS)和ERA5(ECMWF Reanalysis v5,ERA5)再分析数据,结合机器学习方法,构建西北太平洋海雾预报模型。通过计算互信息(Mutual Information,MI)值,筛选出与海雾发生密切相关的12个关键因子,包括海温露点差、相对湿度、海温和经纬度信息等。为了解决有雾与无雾数据样本不平衡问题,采用了重采样技术,并比较了不同采样和特征信息对模型性能的影响。结果表明,加入经纬度作为因子并对数据过采样处理后,模型性能显著提升,其中极致梯度提升树(eXtreme Gradient Boosting ,XGBoost)TS评分最高。模型的特征重要性分析表明,海温露点差和相对湿度是海雾模型中的核心因子。在对比机器学习模型中,XGBoost模型表现最佳,其次是卷积神经网络(Convolutional Neural Network,CNN)和支持向量机(Support Vector Machine,SVM),二者TS评分均超0.3。在个例表现上,XGBoost模型表现更好,与雾区范围的吻合度最高。本研究可为大洋上空的海雾监测和预报提供参考。

    Abstract:

    The Northwest Pacific(NWP) is one of the areas with the highest sea fog frequency globally and serves as a major shipping route. Currently, there are no dedicated sea fog prediction products for this region. Therefore, studying the characteristics and prediction in this area is crucial. Based on the 2013—2023 data from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) and ECMWF Reanalysis v5 (ERA5), this study analyzes the distribution characteristics of sea fog in the NWP and develop a sea fog prediction model. By calculating Mutual Information (MI) values, we identify 12 key factors closely related to sea fog occurrences, including sea temperature-dew point difference, relative humidity, sea surface temperature, and geographical coordinates. To address the issue of imbalanced sea fog data, we apply resampling techniques and compare the effects of different sampling methods and feature information on model performance. The results indicate that adding geographical information as factors and applying oversampling significantly improved model performance, with the eXtreme Gradient Boosting (XGBoost) model showing the most notable improvement. The feature importance analysis indicates that sea surface temperature-dew point difference and relative humidity serve as the core predictors in the sea fog prediction model. Among the machine learning models we compare, XGBoost achieves the best overall performance, followed by the Convolutional Neural Network (CNN) and the the Support Vector Machine (SVM), with both CNN and SVM achieving a TS score above 0.3. In case-specific analyses, the XGBoost model shows the best results, demonstrating the highest agreement with observed fog coverage. This study reveals the complexities of sea fog formation in the NWP and provides a scientific basis for sea fog prediction over open ocean areas.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
文章历史
  • 收稿日期:2025-01-17
  • 最后修改日期:2025-03-19
  • 录用日期:2025-04-11
  • 在线发布日期:
  • 出版日期: