基于机器学习的西北太平洋海雾预报模型研究
作者:
作者单位:

1.中国海洋大学海洋与大气学院,山东 青岛 266100 ;2.中国海洋大学深海圈层与地球系统前沿科学中心,山东 青岛 266100

作者简介:

吴科娟,wkjouc@163.com。
张苏平,zsping@ouc.edu.cn。

通讯作者:

中图分类号:

P457.7;P47

基金项目:

国家重点研发计划项目(2021YFC3101604)


请扫码阅读

Research on sea fog prediction model over Northwest Pacific based on machine learning
Author:
Affiliation:

1.College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100 , China ; 2.Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    西北太平洋是全球海雾频率最高的海域之一,也是海上航运的主要通道所在,目前尚无海雾预报产品,研究该区域海雾发生的特征及其预报具有重要意义。本研究基于2013—2023年国际海洋大气综合数据集(International Comprehensive Ocean-Atmosphere Data Set,ICOADS)和ERA5再分析数据,结合机器学习方法,构建西北太平洋海雾预报模型。通过计算互信息(mutual information,MI)值,筛选出与海雾发生密切相关的12个关键因子,包括海面温度(sea surface temperature,SST;以下简称“海温”)、相对湿度、海温露点差(tSST-td)和经纬度信息等。为了解决有雾与无雾数据样本不平衡问题,采用重采样技术,并比较不同采样方法对模型性能的影响。结果表明,加入经纬度作为因子并对数据过采样处理后,模型性能显著提升,其中极致梯度提升树(eXtreme Gradient Boosting,XGBoost)TS评分(threat score)最高。模型的特征重要性分析表明,海温露点差和相对湿度是海雾模型中的核心因子。在对比机器学习模型中,XGBoost模型表现最佳,其次是卷积神经网络(convolutional neural network,CNN)和支持向量机(support vector machine,SVM),二者TS评分均超过0.3。在个例表现上,XGBoost模型表现更好,与雾区范围的吻合度最高。研究可为大洋上空的海雾监测和预报提供参考。

    Abstract:

    The Northwest Pacific is one of the areas with the highest sea fog frequency globally and serves as a major shipping route. Currently, there are no dedicated sea fog prediction products for this region. Therefore, studying the characteristics and prediction of the sea fog in this area is crucial. Based on the data from International Comprehensive Ocean-Atmosphere Data Set (ICOADS) and ERA5 data from 2013 to 2023, this study analyzes the distribution characteristics of the sea fog over Northwest Pacific and develops a sea fog prediction model using the machine learning method. By calculating mutual information (MI) values, we identify 12 key factors closely related to the occurrence of sea fog, including sea surface temperature (SST), relative humidity, difference between SST and dew point temperature (tSST-td) and geographical coordinates. To address the class imbalance between fog and non-fog samples, we apply resampling techniques and assess the impacts of various sampling strategies on the model performance. The results indicate that adding geographical information as factors and applying oversampling significantly improve the model performance, and the eXtreme Gradient Boosting (XGBoost) model shows the highest threat score. The feature importance analysis indicates that the difference between SST and dew point temperature and relative humidity serve as the core factors in the sea fog prediction model. Among comparative models, the XGBoost model achieves the best overall performance, followed by the convolutional neural network (CNN) and support vector machine (SVM), and both CNN and SVM achieve a threat score above 0.3. Case studies further confirm that the XGBoost model shows the best results, demonstrating the highest agreement with the observed fog coverage. This study reveals the complexities of sea fog formation over Northwest Pacific and provides a scientific basis for sea fog prediction over open ocean areas.

    参考文献
    相似文献
    引证文献
引用本文

吴科娟,张苏平,李昕蓓,等.基于机器学习的西北太平洋海雾预报模型研究[J].海洋气象学报,2025,45(3):18-29.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
文章历史
  • 收稿日期:2025-01-17
  • 最后修改日期:2025-03-19
  • 录用日期:
  • 在线发布日期: 2025-07-01
  • 出版日期: