基于自注意力和稠密卷积改进ConvLSTM的雷达回波外推方法
作者:
作者单位:

阜阳市气象局,安徽 阜阳 236000

作者简介:

杨晓钰,yangxiaoyu3104@163.com。

通讯作者:

中图分类号:

基金项目:

安徽省自然科学基金江淮气象联合基金项目(2208085UQ05);安徽省气象局预报员专项(KY202204)


请扫码阅读

Radar echo extrapolation method based on self-attention and dense convolution improved ConvLSTM
Author:
Affiliation:

Fuyang Meteorological Service, Fuyang 236000 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有雷达回波外推模型存在长时序回波外推模糊失真和强回波预测准确率较低等问题,利用安徽2016年5—9月的多普勒雷达组合反射率拼图数据,设计了一种基于自注意力和稠密卷积改进卷积长短期记忆(convolutional long short-term memory,ConvLSTM)网络的雷达回波外推方法。模型以ConvLSTM为基础,在每个单元结构以及编解码器中间融入自注意力机制,强化模型对于特征长时空间依赖的提取能力,同时用稠密连接卷积代替普通卷积,提高模型的特征重用能力。实验利用过去1 h雷达回波图像预测未来2 h雷达回波图像,并与改进前的ConvLSTM进行对比证明了提出的模型能够提高雷达回波外推的准确率。

    Abstract:

    To address the problems of fuzzy distortion in long-term echoes and low accuracy in predicting strong echoes in existing radar echo extrapolation models, this paper designs a radar echo extrapolation method based on self-attention and dense convolution improved convolutional long short-term memory (ConvLSTM) network by using the composite reflectivity mosaic image of Doppler radar data in Anhui from May to September 2016. Based on ConvLSTM, the model incorporates self-attention mechanism into each cell and Encoder-Decoder to enhance the ability of extracting features with long-term spatial dependence. Meanwhile, the model uses dense convolution instead of common convolution to improve the feature reuse ability. The experiment uses the past 1-h radar echo image to predict the future 2-h radar echo image, and compares the resluts with the ConvLSTM before the improvement, proving that the proposed model can improve the accuracy of radar echo extrapolation.

    参考文献
    相似文献
    引证文献
引用本文

杨晓钰,牛雪梅,祁凯.基于自注意力和稠密卷积改进ConvLSTM的雷达回波外推方法[J].海洋气象学报,2025,45(3):107-116.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
文章历史
  • 收稿日期:2024-05-14
  • 最后修改日期:2024-07-21
  • 录用日期:
  • 在线发布日期: 2025-07-01
  • 出版日期: