基于GEE多特征优选的设施农业类型信息提取
作者:
作者单位:

1.山东省气象防灾减灾重点实验室,山东 济南 250031 ;2.山东省气候中心,山东 济南 250031 ;3.喀什地区气象局,新疆 喀什 844000

作者简介:

冯冬含,dorisfdh@163.com。
秦泉,qquan0303@163.com。

通讯作者:

中图分类号:

P237;S127

基金项目:

山东省自然科学基金项目(ZR2020MF130,ZR202211260263);山东省气象局科研项目(2023sdqxz12,2021sdqxz03);山东省气候中心创新项目(2023QHCX04)


请扫码阅读

Extraction of facility agriculture types by multi-feature selection based on GEE
Author:
Affiliation:

1.Key Laboratory for Meteorological Disaster Prevention and Mitigation of Shandong, Jinan 250031 , China ; 2.Shandong Climate Center, Jinan 250031 , China ; 3.Kashgar Meteorological Service, Kashgar 844000 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为对不同设施农业类型信息进行识别分类和精细化提取,以潍坊日光温室和塑料大棚为研究对象,基于Google Earth Engine(GEE)云计算平台,利用Sentinel-1雷达卫星数据、Sentinel-2光学卫星数据和SRTM DEM数据,提取光谱特征、指数特征、雷达特征、纹理特征和地形特征共41个特征变量并进行特征优选,其中,通过累计差法对比14种不同尺寸窗口,计算得到Sentinel-2影像最佳纹理特征。采用随机森林分类算法,根据不同特征设计6种组合方案开展实验,得到潍坊2023年10 m分辨率设施农业空间分布情况,探讨不同特征组合对设施农业信息提取精度的影响。结果表明:(1)Sentinel-2提取设施农业的最佳纹理特征窗口是27×27,最佳纹理特征组合为均值、熵、方差、相异性和对比度。(2)在光谱特征、指数特征的基础上加入纹理特征、雷达特征和地形特征对设施农业进行分类,不同类型特征对设施农业提取的有利程度由大到小依次为纹理特征、地形特征、雷达特征,与单一光谱和指数特征相比,分类精度分别提升4.08%、1.40%、0.80%。(3)特征优选后的方案提取精度最高,设施农业的总体精度为91.03%,Kappa系数为0.86。其中,塑料大棚的生产者精度和用户精度分别为92.21%和91.83%;日光温室的生产者精度和用户精度分别为88.54%和89.47%。(4)利用Sentinel系列影像和SRTM DEM地形数据,构建的潍坊多种设施农业类型遥感提取方法,可为设施农业灾害风险管理提供决策支撑。

    Abstract:

    To distinguish and precisely extract the information of different types of facility agriculture, this study takes the solar greenhouses and polyhouses in Weifang as the research objects using the Google Earth Engine (GEE) platform. By integrating Sentinel-1 radar data, Sentinel-2 optical data and SRTM DEM data, 41 feature variables are extracted, including the features of spectrum, index, radar, texture and topography, and the optimal selection of features is conducted. By comparing 14 window scales with the cumulative difference method, the optimal texture features for Sentinel-2 imagery are identified. The experiments with 6 combinations of features are designed using the random forest classification algorithm to generate a distribution map of facility agriculture in Weifang with the resolution of 10 m in 2023, and the impacts of different combinations on the accuracy of extraction are explored. The results are outlined below. (1) The optimal window scale of the texture feature for extracting facility agriculture using Sentinel-2 is 27×27, and the best combination of texture features includes Mean, Entropy, Variance, Dissimilarity and Contrast. (2) Besides the features of spectrum and index, the features of texture, radar and topography are used to classify facility agriculture. The order of different features beneficial to extract facility agriculture from high to low is texture, topography and radar, and compared to the classification using only spectrum and index, the accuracy increases by 4.08%, 1.40% and 0.80%, respectively. (3) The optimal selection of features yields the highest classification accuracy, with an overall accuracy of 91.03% and a Kappa coefficient of 0.86. The producer’s accuracy and user’s accuracy for polyhouses are 92.21% and 91.83%, respectively, while those for solar greenhouses are 88.54% and 89.47%, respectively. (4) The remote sensing extraction method for various facility agriculture types in Weifang using Sentinel imagery and SRTM DEM topography data offers decision-making support for disaster risk management of facility agriculture.

    参考文献
    相似文献
    引证文献
引用本文

冯冬含,李峰,秦泉,等.基于GEE多特征优选的设施农业类型信息提取[J].海洋气象学报,2025,45(3):117-128.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
文章历史
  • 收稿日期:2024-10-19
  • 最后修改日期:2025-02-22
  • 录用日期:
  • 在线发布日期: 2025-07-01
  • 出版日期: