大兴机场激光雷达风切变告警时空特征及天气分型研究
DOI:
作者:
作者单位:

1.民航华北空管局大兴空管中心气象台;2.民航华北空管局大兴空管中心安全业务部

作者简介:

通讯作者:

中图分类号:

P412.25; P458.1

基金项目:

2024年民航局安全能力建设项目《低空风切变识别与预警研究》


请扫码阅读

Spatiotemporal characteristics and weather pattern classifications of lidar wind shear alerts at Beijing Daxing International Airport
Author:
Affiliation:

Meteorological Observatory of Daxing Air Traffic Control Center, North China Air Traffic Management Bureau, Civil Aviation Administration of China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于北京大兴国际机场2021-2022年激光测风雷达观测数据,系统分析低空风切变告警的时空分布特征,并通过2022年的133次告警事件分析了风切变告警与天气条件的关联性。结果表明:风切变告警具有显著的季节性和日变化特征:告警高发期集中在4-6月,夜间告警频次显著高于白天。天气分型结果显示伴随雷暴、大风、大雾等典型天气过程的风切变告警事件占总数的约1/3。尽管由逆温破坏触发的告警仅占9%,但其对雾的消散预报具有重要指示意义。由于不同高度层风速差异触发的风切变告警持续时间较长,但对飞行安全影响相对较小。典型个例验证表明,激光测风雷达能够提前捕捉冷空气过境所引发的风向和风速突变,在大风天气中风切变告警命中率可达74%。本研究成果可为大兴机场低空风切变成因诊断、预警阈值优化及多源数据融合预报提供技术支撑,对提升机场运行安全与航空气象服务水平具有重要应用价值。

    Abstract:

    Based on Doppler lidar observation data from Beijing Daxing International Airport during 2021-2022, a systematic analysis was conducted on the spatiotemporal distribution characteristics of low-level wind shear alerts. Furthermore, the relationship between lidar alerts and weather conditions was examined using 133 alert events from 2022. The results indicate significant seasonal and diurnal variations in wind shear alerts, with a peak period from April to June and a notably higher alert frequency during nighttime compared to daytime. Weather pattern classifications reveal that wind shear events associated with thunderstorms, strong winds, and fog account for approximately one-third of the total alerts. Although only 9% of alerts are triggered by temperature inversion breakdowns, they serve as important indicators for forecasting fog dissipation. Alerts induced by vertical wind speed differences tend to last longer but pose relatively minor impacts on flight safety. Case studies confirm that the lidar system can effectively detect abrupt changes in wind direction and speed caused by cold air intrusions, achieving a wind shear alert hit rate of up to 74% during strong wind events. These findings provide technical support for diagnosing the causes of wind shear, optimizing alert thresholds, and improving multi-source data integration forecasting, offering practical value for enhancing operational safety and meteorological services at the airport.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
文章历史
  • 收稿日期:2025-05-05
  • 最后修改日期:2025-07-12
  • 录用日期:2025-07-13
  • 在线发布日期:
  • 出版日期:
关闭

关闭