冬季西伯利亚—青藏高原偶极型温度异常的特征及可能影响因子
DOI:
作者:
作者单位:

中国海洋大学海洋与大气学院

作者简介:

通讯作者:

中图分类号:

P467

基金项目:

国家重点研发计划(2023YFF0805102)


请扫码阅读

Characteristics and possible influencing factors of Siberian–Tibetan Plateau dipole temperature anomaly in boreal winter
Author:
Affiliation:

College of Oceanic and Atmospheric Sciences,Ocean University of China

Fund Project:

National Key R&D Program of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本研究基于观测数据和多源再分析资料,探究了1981—2023年冬季(12月—次年2月)亚洲西伯利亚—青藏高原偶极型地表温度异常模态的特征及可能影响因子。研究发现:秋末的巴伦支—喀拉海海冰和冬季西地中海—东北大西洋区域(Western Mediterranean–Northeast Atlantic,WMNA)降水分别通过经向波列和副极地及副热带波列调制偶极型温度异常。西伯利亚冷异常源于贝加尔湖低压异常削弱副极地西风导致的冷空气南下;青藏高原暖异常源于高压异常控制下云量偏少导致的短波辐射增加,另由冰雪-反照率反馈加强。秋末(10、11月)巴伦支—喀拉海海冰偏少时,通过热力作用激发上空高压异常并维持至冬季。进而波动能量自高压异常东部南传,使贝加尔湖低压异常形成。这有利于西伯利亚冷异常并最终有利于西伯利亚—青藏高原偶极型温度异常正位相的形成。巴伦支—喀拉海海冰偏多时则相反。冬季WMNA降水偏多(少)时,高空负(正)波源激发副极地、副热带两条波列。贝加尔湖和青藏高原分别受低压(高压)和高压(低压)异常影响,有利于西伯利亚—青藏高原偶极型温度异常正(负)位相形成。本研究阐明了海冰—大气热力动力耦合及波动能量传播对西伯利亚—青藏高原偶极型温度异常的调控作用,为冬季西伯利亚和青藏高原地区温度年际变化预测提供了理论依据。

    Abstract:

    Based on observational data and multi-source reanalysis materials, this study explores the characteristics and possible influencing factors of the Siberia–Tibetan Plateau dipole surface temperature anomaly pattern in Asia during the winter (December to February of the following year) from 1981 to 2023. Research findings: Late autumn Barents–Kara sea-ice and the winter precipitation in Western Mediterranean–Northeastern Atlantic (WMNA) respectively modulate the dipole-type temperature anomaly through meridional wave train and the sub-polar and sub-tropical wavelets. The Siberian cold anomaly is primarily driven by cold advection resulting from weakened sub-polar westerlies under the influence of an anomalous Baikal low-pressure system. The Tibetan Plateau warm anomaly stems from increased shortwave radiation due to reduced cloud cover controlled by a persistent high-pressure anomaly, with additional amplification via ice/snow-albedo feedback. In late autumn (October–November), low sea ice concentration in the Barents–Kara Sea triggers an abnormal high-pressure system in the upper atmosphere by thermal and maintains it until winter. Subsequently, the Rossby wave energy spreads from the eastern part of the abnormal high-pressure system to the south, which is conducive to the formation of a low-pressure anomaly over the Baikal Lake. This is conducive to the occurrence of the Siberian cold anomaly and ultimately helps to form the positive phase of the Siberian–Tibetan Plateau dipole. And vice versa. Furthermore, the positive (negative) winter WMNA precipitation anomaly excites a negative (positive) upper-level wave source, which in turn triggers both sub-polar and sub-tropical wave trains. Contrasting pressure anomalies—low-pressure (high-pressure) over the Tibetan Plateau and high-pressure (low-pressure) near Lake Baikal, promoting the development of the Siberian–Tibetan Plateau temperature dipole positive (negative) phase. This study clarifies the regulatory effects of the thermodynamic-dynamic coupling between sea ice and the atmosphere and the remote propagation of wave energy on the Siberian–Tibetan Plateau dipole temperature anomaly, providing a theoretical basis for the prediction of extreme winter temperatures in Siberian and Tibetan Plateau.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
文章历史
  • 收稿日期:2025-06-04
  • 最后修改日期:2025-07-23
  • 录用日期:2025-07-23
  • 在线发布日期:
  • 出版日期:
关闭

关闭