高理,孔祥宁,李玉,等.CFOSAT 与 MetOp 卫星散射计 12.5 km 产品反演风速交叉验证分析[J].海洋气象学报,2024,44(4):91-100. GAO Li, KONG Xiangning, LI Yu, et al. Cross-validation analysis of wind speed retrieved by 12.5 km products of CFOSAT and MetOp satellite scatterometers [J]. Journal of Marine Meteorology, 2024, 44 (4): 91-100. DOI: 10. 19513/j. cnki. hyqxxb. 20240709001.(in Chinese)

CFOSAT 与 MetOp 卫星散射计 12.5 km 产品 反演风速交叉验证分析

高理^{1,2,3},孔祥宁^{1,2,3},李玉⁴,张秀芝⁴,董旭光^{1,2,3}

(1.山东省气象防灾减灾重点试验室,山东 济南 250031;2.山东省气候中心,山东 济南 250031;3.长岛国家气候观象台,山东 长岛 265800;4.国家气候中心,北京 100081)

摘 要 按照 30 min 和 50 km 的时空窗口,对 2021—2022 年同期在轨的中法海洋卫星(China-France Oceanography SATellite, CFOSAT) 微波散射计(SCATterometer,简记为"CSCAT")与 MetOp (Meteorological Operational) 卫星 A、B、C 星先进散射计(Advanced SCATterometer-A/B/C, ASCAT-A/ B/C)反演海面风速进行交叉配对,进而对匹配数据进行降雨和陆地质控、匹配数据相关分析、相对 误差和风速分布偏差分析,结果如下:(1)质量控制后 CSCAT 与 ASCAT-A 反演风速相关系数为 0.94~0.97,均方根误差为0.82~1.89 m·s⁻¹。(2)2 m·s⁻¹以下风速段 CSCAT 比 ASCAT-A/B/C 大 30%~70%,2~21 m·s⁻¹风速段 CSCAT 比 ASCAT-A 小 0~5%,2~3 m·s⁻¹风速段 CSCAT 较 ASCAT-B/C 大 3%~30%,4~17 m·s⁻¹风速段 CSCAT 比 ASCAT-B/C 小 2%~10%。(3)2021 年中国近海整 体风速 CSCAT 大于 ASCAT-A,其中1月,东海、南海、菲律宾及以东海域 CSCAT 比 ASCAT-A 大 0.5~1.5 m·s⁻¹;7月, 黄海、南海 CSCAT 比 ASCAT-A 大 1.0~1.5 m·s⁻¹, 与中国近海 2021 年各月平 均风速变化相吻合,表明卫星间风速交叉验证可以很好地揭示卫星间风速的差异。 关键词 中法海洋卫星(CFOSAT);卫星反演风速;交叉验证;偏差分析 中图分类号: P405 文章编号: 2096-3599(2024)04-0091-10 文献标志码:A DOI:10.19513/j.cnki.hyqxxb.20240709001

Cross-validation analysis of wind speed retrieved by 12.5 km products of CFOSAT and MetOp satellite scatterometers

GAO Li^{1,2,3}, KONG Xiangning^{1,2,3}, LI Yu⁴, ZHANG Xiuzhi⁴, DONG Xuguang^{1,2,3}

(1. Key Laboratory for Meteorological Disaster Prevention and Mitigation of Shandong, Jinan 250031, China; 2. Shandong Climate Center, Jinan 250031, China; 3. Changdao National Climate Observatory, Changdao 265800, China; 4. National Climate Center, Beijing 100081, China)

Abstract The cross matching of sea surface wind speed retrieved by China-France Oceanography SATellite (CFOSAT) SCATterometer (hereinafter referred to as "CSCAT") and Advanced SCATterometer (ASCAT) onboard MetOp (Meteorological Operational)-A/B/C satellites (hereinafter referred to as "ASCAT-A/B/C") in the same period of 2021–2022 is carried out according to the space-time windows of 30 min and 50 km, and then after rainfall and land quality control, the matched data is studied with respect to correlation, relative error and deviation analysis of wind speed distribution. The

收稿日期:2024-07-09;修回日期:2024-10-16

基金项目:风云卫星应用先行计划项目(FY-APP-ZX-2023.02);环渤海区域科技协同创新基金项目(QYXM202107,QYXM202206);山东省 气象局科研项目(2023SDYD07)

第一作者简介:高理,女,硕士,高级工程师,主要从事海洋气象和气候应用研究,gaoli201213@163.com。

results are listed as follows. (1) After quality control, the correlation coefficient between CSCAT and ASCAT-A is 0.94–0.97, and the root mean square error is $0.82-1.89 \text{ m} \cdot \text{s}^{-1}$. (2) The wind speed of CSCAT is 30%-70% larger than that of ASCAT-A/B/C when the wind speed is below $2 \text{ m} \cdot \text{s}^{-1}$, 0-5% smaller than ASCAT-A in the range of $2-21 \text{ m} \cdot \text{s}^{-1}$, 3%-30% larger than ASCAT-B/C in the range of $2-3 \text{ m} \cdot \text{s}^{-1}$, and 2%-10% smaller than ASCAT-B/C in the range of $4-17 \text{ m} \cdot \text{s}^{-1}$. (3) In 2021, the overall wind speed of CSCAT in China's offshore areas is larger than that of ASCAT-A, and the wind speed of CSCAT is $0.5-1.5 \text{ m} \cdot \text{s}^{-1}$ larger than that of ASCAT-A in the East China Sea, the South China Sea, the Philippines and the waters east of it in January. The wind speed of CSCAT is $1.0-1.5 \text{ m} \cdot \text{s}^{-1}$ larger than that of ASCAT-A in the Yellow Sea and the South China Sea in July, which is consistent with the changes in the monthly mean wind speed in China's offshore areas in 2021, showing that the cross validation of wind speed can well reveal the difference in wind speed between satellites.

Keywords China-France Oceanography SATellite (CFOSAT); satellite wind speed retrieval; cross validation; deviation analysis

引言

监测海面风场对于理解海洋与大气之间的相互作 用以及开展海洋、大气领域的相关研究至关重要[1]。 1978年以来,卫星微波散射计和辐射计一直在提供洋 面风的测量,为了将近几十年各种卫星洋面风数据相 互校准且合并为一致的气候数据集,通过比较海洋浮 标与卫星洋面风的差异,并分析不同卫星传感器之间 的交叉验证结果,对不同卫星反演风速进行评估[2-4]。 微波散射计是目前获取全球海面风场最主要的传感 器,其利用海面粗糙度的雷达后向散射系数以及多角 度观测,间接反演海表风场信息,主要工作在C波段和 Ku 波段,C 波段波长较长,受云雨等因素的影响较小; Ku 波段频率高,对目标特征的变化更加敏感,有利于 探测低速风场。目前为止,已成功发射的卫星散射计 运行时间较长的主要包括欧洲遥感卫星(European Remote Sensing Satellite, 简记为"ERS") 系列的 ERS-1 (1991年7月—1996年6月)和ERS-2(1995年4月— 2001 年 1 月), 快速散射计(Quick SCATterometer, QuikSCAT: 1999年6月—2009年11月), 欧洲气象卫 星应用组织(European Organisation for the Exploitation of Meteorological Satellites, EUMETSAT) 发射的 MetOp (Meteorological Operational)卫星 A 星(MetOp-A)搭载 的先进散射计(Advanced SCATterometer-A, ASCAT-A; 2006年10月—2021年11月)、ASCAT-B(2012年9月 至今)、ASCAT-C(2018年11月至今),中法海洋卫星 (China-France Oceanography SATellite, CFOSAT) 搭载 的微波散射计(SCATterometer,简记为"CSCAT";2018 年10月至今),海洋二号B星(HY-2B)微波散射计(简

记为"HY-2BSCAT",2018年至今),海洋二号 C 星(HY-2C) 微波散射计(简记为"HY-2CSCAT", 2020年至今), 海洋二号 D 星(HY-2D) 微波散射计(简记为"HY-2DSCAT", 2021年至今)等。2021年7月5日, 风云三 号 E 星(FY-3E)在酒泉卫星发射中心成功发射,是中 国自主研发的第二代极轨气象卫星。受天气状况和海 况的影响,由于不同设备测风的差异,卫星反演风速资 料的精度和适用性需要地面观测资料及卫星交叉轨道 资料的验证。荷兰皇家气象局(Royal Netherlands Meteorological Institute,简记为"KNMI")使用全球的浮 标观测数据对其发布的 ASCAT 资料进行质量评价, 12.5 km 产品风速平均偏差和均方根误差(root mean square error, RMSE) 为-0.33 m·s⁻¹和1.06 m·s⁻¹, 风向平 均偏差和 RMSE 为-0.50°和17.28°^[5]。张增海等^[6]对中 国近海的 ASCAT 反演风场资料进行检验,近海中相对 离岸较近的海域风速平均绝对偏差和 RMSE 为 1.4 m·s⁻¹和 1.2 m·s⁻¹,风向绝对偏差和 RMSE 为 26°和 39°。李玉等^[7]利用中国近海浮标资料与 QuikSCAT 和 ASCAT-A 的微波散射计海面风资料进行分析,两者风 速相关系数达 0.95 时,3.5 m·s⁻¹以下的风速区间内前 者明显小于后者,10.0 m·s⁻¹以上的风速区间内前者明 显大于后者。高留喜等^[8]用浮标资料对 QuikSCAT 和 ASCAT 南海北部数据进行了分析。

为了获得高精度的海面风场产品,国内外一直在 探索改进散射计反演海面风场算法,开展风场融合研 究^[9]。Yu等^[10]使用最小方差线性估计分析了 OAFlux(Objectively Analyzed air-sea Fluxes)项目研制 的包含12个卫星传感器(2个散射计和10个微波辐 射计)数据的高分辨率全球海洋表面矢量风产品,低 风和中风(风速小于 15 m·s⁻¹)占全球日风场的 98%, 除了受天气风暴影响的区域外,全球海洋上空的日平 均地面风可以由散射计和辐射计合并得到,但强风雨 条件对风场反演造成了一定的影响^[11-12]。林溢园 等^[9]基于变分估计方法,利用 HY-2A、MetOp-A 和印 度空间研究组织发射的 Oceansat-2 卫星的星载微波 散射计数据,开展了融合技术研究,多源风场的融合 结果明显优于单一卫星的观测结果。但关于不同卫 星传感器之间的交叉验证以及根据卫星数据中的质 控码对风速进行质量控制则不多见。

CFOSAT 由中国和法国联合研制,其搭载的国际上首个星载扇形波束旋转扫描体制的 CSCAT,由中国科学院国家空间科学中心研制,也是中国首次从方案设计论证、载荷技术实现、数据处理与反演全链条自主创新实现的散射计,其反演的 10 m 风场产品有 25.0 km 和 12.5 km 两种分辨率。2018 年 10月 29日成功发射,海面风场产品于 2019 年正式发布,在业务服务保障工作中提供了大量及时、准确、精细的信息。文中针对 CSCAT 和稳定运行历时较久的 MetOp-A/B/C 系列卫星 ASCAT 开展交叉轨道海面风速对比分析,为卫星海面风校准融合、海洋气象研究和业务应用提供科学支撑。

1 资料和方法

1.1 使用资料

ASCAT 搭载在 EUMETSAT 发射的 MetOp 卫星

上,反演海洋表面 10 m 高度上的风速和风向。2006 年 10 月发射的 MetOp-A 星,已于 2021 年 11 月停止 运行;2012 年 9 月发射 MetOp-B 星、2018 年 11 月发 射 MetOp-C 星,目前仍在轨运行。3 颗星的 ASCAT 反演风均有 25.0 km 和 12.5 km 两种分辨率的洋面 风产品,文中使用 12.5 km 分辨率 L2 数据产品,工 作频率为 C 波段(5.255 GHz)^[13],资料来源于 KNMI,下载自 https://scatterometer.knmi.nl。

CFOSAT 的 10 m 反演风场刈幅大于 1 000 km, 雷达分辨单元约为 10 km×12.5 km,是目前原始空 间分辨率最高的在轨运行微波散射计^[2],其反演产 品也有 25.0 km 和 12.5 km 两种分辨率,文中使用 12.5 km 分辨率 L2B 数据产品,工作频率为 Ku 波段 (13.575 GHz),资料来源于国家卫星海洋应用中心 (National Satellite Ocean Application Service, NSOAS),下载自海洋卫星数据分发系统网站 (https://osdds.nsoas.org.cn)。

图1展示了 2019—2022 年 ASCAT-A/B/C 和 CSCAT 反演风速在中国近海区域(105°~135°E, 0°~45°N)逐月平均风速变化情况,可以看到, ASCAT-A/B/C 风速比较接近,有的月份存在差异; CSCAT 与 ASCAT-A/B/C 的风速差异明显,尤其表 现在1、7月风速处于峰谷值的月份,最大平均风速 差异可达1.5 m·s⁻¹。因此文中通过对4颗卫星同 期在轨的2020—2021 年海面风数据进行交叉验证 分析,探索它们之间在不同风速段的差异。

图 1 中国近海区域 ASCAT-A/B/C 和 CSCAT 反演风速逐月平均变化 Fig.1 Variation of monthly mean wind speed over China's offshore areas retrieved by ASCAT-A/B/C and CSCAT

1.2 风速匹配时空窗口

卫星海面风交叉验证是指同期在轨的2颗卫星 在相同的时间经过相同的地点挑取其风速进行配 对,进而对所有匹配数据进行对比分析,获得2颗卫 星反演风速的差异。卫星测风地面轨道随时间不断 变化(图2),因此需要选取一定的时空窗口筛选卫 星轨道交叉的样本数据。国内外相关研究^[14-15]在 将卫星遥感数据与浮标现场测量数据进行比较时, 通常选取时间窗口为 0.5~1.5 h, 空间窗口为 10~150 km。国外通常采用 30 min、50 km 的窗口^[16-18], Queffeulou^[19]即采用此时空窗口介绍欧洲环境卫星(ENVIronmental SATellite, ENVISAT)装载的雷达高度计(Radar Altimeter 2, RA-2)风和波浪的验证结果。文中选取 2 颗卫星轨道交叉数据点距离小于 50 km 且时间小于 30 min 的数据进行配对和对比分析。

图 2 2021 年 1 月 1 日 ASCAT-B 与 CSCAT 测风轨道图 Fig.2 Wind track map from ASCAT-B and CSCAT on 1 January 2021

1.3 匹配样本筛选范围及质控

选取 2020—2021 年 1、4、7、10 月轨道 ASCAT-A/B/C 和 CSCAT 的反演风速进行样本配对,分别 代表冬、春、夏、秋四季情况。由于每颗卫星运行参 数不同,轨道交叉点在不同区域有数量差异,为了得 到足够多的样本对,选取包含中国近海区域及往东、 往北扩展到太平洋中高纬度范围(105°~120°W, 5°~70°N),挑选出 2020、2021 年 ASCAT-A 和 CSCAT 匹配样本分别为 712 897、4 835 156 对; ASCAT-B 和 CSCAT 在中国近海区域交叉点较少, 在中高纬度 2020、2021 年匹配样本分别为20 351、 22 894 对,多集中在 7 月和 10 月; ASCAT-C 和 CSCAT 在中国近海区域交叉点同样稀少, 2020、 2021 年在中高纬度匹配样本分别为 23 017、18 378 对,详见图 3。根据数据质量码标识,剔除陆地覆 盖、降水影响,进一步筛选交叉样本(表1)。

1.4 稳健回归和 Q-Q 图分析方法

基于数据处理中无法预料的错误和误差, 冯耀 $p^{[20]}$ 提出了非线性稳健回归模型。采用稳健回归 (robustness regression)来估计线性模型 $y = X\beta$, 返回 系数向量 β 。算法基于 bisquare 加权函数的迭代重 加权最小二乘法, 识别出潜在可能的离群点、强影响 点或与模型假设相偏离的结构, 拟合大部分数据存 在的结构。

Q-Q 图(quantile-quantile plot)是用图形的方式 比较两组数据的概率分布^[21-22],把两组数据按分位 数分为等间隔数组,同一个分位数组成坐标点(x,y), 形成一系列两组数据的样本对,如果两个分布相似, 则该 Q-Q 图趋近于落在 y = x 线上,如果两分布线性 相关,则点在 Q-Q 图上趋近于落在一条直线上。

图 3 2020—2021 年 1、4、7、10 月 CSCAT 与 ASCAT-A/B/C 轨道交叉风速匹配样本对数 Fig.3 The number of cross-track wind speed matching sample pairs retrieved by CSCAT and ASCAT-A/B/C in January, April, July and October from 2020 to 2021

表1 2020—2021 年 CSCAT 与 ASCAT-A/B/C 轨道交叉风速匹配样本对数质控前后对比分析

Table 1 Comparative analysis of the number of cross-track wind speed matching sample pairs retrieved by CSCAT and ASCAT-A/B/C from 2020 to 2021 before and after quality control

	与 CSCAT 交叉样本数量/对						
月份							
	ASCAT-A	ASCAT-B	ASCAT-C	ASCAT-A	ASCAT-B	ASCAT-C	
2020年1月	17 947	334	53	10 832	219	18	
2020年4月	88 694	524	208	68 482	388	176	
2020年7月	254 209	9 297	11 278	206 817	6 699	7 548	
2020年10月	352 047	10 196	11 478	311 862	8 171	9 297	
2021年1月	562 804	758	236	489 759	623	140	
2021年4月	965 579	547	32	896 841	394	14	
2021年7月	1 413 273	10 085	8 487	863 940	4 891	4 222	
2021年10月	1 893 509	11 504	9 623	1 455 911	7 671	6 699	

1.5 相对误差

CSCAT 与 ASCAT 海面风速的对比检验主要针 对样本的 RMSE 和不同风速等级区间的平均偏差进 行。具体公式如下:

$$\bar{x} = \sum_{i=1}^{N} \frac{y_i - x_i}{N \cdot x_i} , \qquad (1)$$

$$V_{\text{RMSE}} = \sqrt{\frac{\sum_{i=1}^{N} (y_i - x_i)^2}{N}}$$
(2)

式中:x 为平均相对误差; x_i 为 CSCAT 反演风速, y_i 为 ASCAT 反演风速,单位为 m·s⁻¹;N 为样本对数,单位为对; V_{RMSE} 为均方根误差值。

2 交叉结果分析

2.1 匹配风速对比分析

2020、2021 年 ASCAT-A 与 CSCAT 交叉风速数 量较多,因此选取 ASCAT-A 代表 ASCAT 系列卫星 进行质控前后对比分析,以1、7月代表冷、热季节, 分别分析2颗卫星匹配的原始样本、剔除陆地覆盖、 剔除降水影响及同时剔除两者影响的关系。

由 2 颗卫星在不同质控条件下的交叉匹配风速 散点图(图 4)可以看出,不论是在 1 月还是 7 月, CSCAT 与 ASCAT-A 交叉风速剔除陆地覆盖和剔除降 水影响,2 颗卫星风速的相关性均有所提高,RMSE 同 时减少,尤其是剔除降水影响后散点更加集中在拟合 线附近,而剔除陆地覆盖后散点图的分布态势变化不 大。表 2 列出每种质控方案下的风速匹配对数(*N*)、 相关系数(*R*)和 RMSE,2020年 1 月,陆地覆盖占5.4% 的样本,降水影响占36.7%的样本,两者均剔除后,相 关系数由0.961提高到0.972,RMSE 由1.98 m·s⁻¹降至 1.89 m·s⁻¹;2020年 7 月,陆地覆盖占6.6%的样本,降 水影响占13.0%的样本,两者均剔除后,相关系数由 0.929提高到0.941, RMSE 由 1.14 m·s⁻¹降至 0.97 m·s⁻¹;2021年 1 月,陆地覆盖占3.3%的样本,降水影 响占10.4%的样本,两者均剔除后,相关系数由0.967 提高到0.970, RMSE由1.29m·s⁻¹降至1.17m·s⁻¹; 2021年7月,陆地覆盖占2.9%的样本,降水影响占 37.1%的样本,两者均剔除后,相关系数由0.954提高 到0.956, RMSE由1.03m·s⁻¹降至0.82m·s⁻¹。分析显 示,1月风速总体大于7月,两年的1月RMSE均较7 月偏大,而2020年1月交叉样本较少,风速散点密度 集中范围为10~15m·s⁻¹,而其他三者交叉样本多,且 散点密度集中在较低风速段,因而2020年1月RMSE 较其他三者偏大明显。

Q-Q 图可以很好地展示两组数据由小到大的跨度变化以及 2 颗卫星风速的细微差异。由质控后 2021 年全年的样本分析(图 5)来看,ASCAT-B/C 与 CSCAT 的 Q-Q 图基本一致,4 m·s⁻¹以下低风速段

CSCAT 略偏大,4~13 m·s⁻¹风速段 CSCAT 接近或略 小于 ASCAT-B/C,13 m·s⁻¹以上风速段波动较大,无 18 m·s⁻¹以上风速;ASCAT-A 与 CSCAT 的 Q-Q 图则 有明显差异,风速小于 3 m·s⁻¹时 CSCAT 略偏小,3~ 23 m·s⁻¹风速段 2 颗卫星接近,风速大于23 m·s⁻¹时 CSCAT 小于 ASCAT-A,无 30 m·s⁻¹以上风速。此差 异在 2021 年全年的散点图(图 6)上也可以清晰地看 出,ASCAT-A 与 CSCAT 的交叉样本风速多集中在 3~ 13 m·s⁻¹范围,大风速段较为离散,最大风速集中在 30 m·s⁻¹以内,两组数据的相关系数为0.96,RMSE 为 0.96 m·s⁻¹; 而 ASCAT-B/C 与 CSCAT 的交叉风速多 集中在 5~12 m·s⁻¹范围,最大风速集中在 18 m·s⁻¹以 内,样本更接近线性拟合线,相关系数分别为 0.92、 0.93,RMSE 略高,分别为1.24、1.11 m·s⁻¹。

表 2 CSCAT 与 ASCAT-A 轨道交叉匹配风速关系质控 前后对比分析

Table 2 Comparative analysis of cross-matching wind speed relationship between CSCAT and ASCAT-A before and after quality control

and allor quality control								
日小	八米	匹配对数/	RMSE/	相关				
月忉	万 矢	对	$(m\boldsymbol{\cdot} s^{-1})$	系数				
2020年1月	全样本	17 947	1.977	0.961				
	剔除陆地覆盖	16 974	1.962	0.964				
	剔除降水影响	11 365	1.906	0.970				
	剔除陆地和降水影响	10 832	1.893	0.972				
2020年7月	全样本	254 209	1.144	0.929				
	剔除陆地覆盖	237 465	1.118	0.932				
	剔除降水影响	221 048	0.994	0.938				
	剔除陆地和降水影响	206 817	0.971	0.941				
2021年1月	全样本	562 804	1.288	0.967				
	剔除陆地覆盖	544 484	1.280	0.968				
	剔除降水影响	504 467	1.180	0.969				
	剔除陆地和降水影响	489 759	1.174	0.970				
	全样本	1 413 273	1.030	0.954				
2021 年7日	剔除陆地覆盖	1 372 716	1.024	0.956				
2021 平 / 月	剔除降水影响	888 957	0.831	0.954				
	剔除陆地和降水影响	863 940	0.823	0.956				

2.2 误差分析

基于 2021 年 1、4、7、10 月 ASCAT-A/B/C 与 CSCAT 的交叉风速,每间隔 1 m·s⁻¹求 2 颗卫星风速 之间的误差百分率,结果见图 7。2 m·s⁻¹以下的低 风速段, CSCAT 比 ASCAT-A/B/C 大 30% ~ 70%; 2~21 m·s⁻¹风速段 CSCAT 比 ASCAT-A 小 0~5%; 22 m·s⁻¹以上风速段 CSCAT 比 ASCAT-A 小 10%左 右。对于 ASCAT-B/C 而言, 2 ~ 3 m·s⁻¹风速段 CSCAT 较 ASCAT-B/C 大 3% ~ 30%, 4~17 m·s⁻¹风 速段 CSCAT 比 ASCAT-B/C 小 2% ~ 10%, 与图 1 相 吻合,由此可见,通过交叉验证可以很好地揭示卫星 间风速的差异。ASCAT-A 与 CSCAT 交叉风速 5~ 8 m·s⁻¹的样本最多, ASCAT-C 与 CSCAT 交叉风速 6~9 m·s⁻¹的样本最多, ASCAT-C 与 CSCAT 交叉风速 速7~10 m·s⁻¹的样本最多, 这可能与卫星轨道交叉 点所处的纬度不同有关。

图 5 2021 年 ASCAT-A/B/C 和 CSCAT 反演风速匹配样本 Q-Q 图 Fig.5 Q-Q plot of wind speed matching samples retrieved by ASCAT-A/B/C and CSCAT in 2021

图 6 2021 年 ASCAT-A/B/C 和 CSCAT 的反演风速匹配样本散点密度图 Fig.6 Density scatter plot of wind speed matching samples retrieved by ASCAT-A/B/C and CSCAT in 2021

Fig.7 Wind speed error analysis of ASCAT-A/B/C and CSCAT in 2021

3 风速分布对比分析

3.1 卫星风速分布

选取 2021 年 1、7 月 ASCAT-A 和 CSCAT 同期 反演风速数据,对海岸陆地及岛屿影响进行屏蔽处 理后,分析中国近海的平均风速分布(图 8)。2 颗 卫星反演风速分布基本一致,1月台湾海峡、巴士海峡风速最大,风速大值区向东北延伸至琉球群岛、朝鲜海峡,向西南延伸至越南东南海域一带,菲律宾以南、印度尼西亚以东低纬度海域风速小,渤海、黄海北部海上风速相对中纬度也偏小;7月是小风月,2颗卫星反演风速在东海、南海中西部、菲律宾以东

海域较大,菲律宾以南、渤海、黄海北部、日本海海域 较小。整体而言,CSCAT风速大于ASCAT-A。卫星 反演风速与基于模式资料、船舶资料绘制的平均风 速气候分布态基本吻合^[23-25]。

图 8 2021 年 1、7 月 ASCAT-A 和 CSCAT 反演平均风速分布 Fig.8 Distribution of mean wind speed retrieved by ASCAT-A and CSCAT in January and July 2021

3.2 CSCAT 与 ASCAT-A 的差异分析

图 9 为 2021 年 1 月和 7 月 CSCAT 与 ASCAT-A 的风速差分布,可以看到,1 月东海、南海、菲律宾及 以东海域风速 CSCAT 比 ASCAT-A 大 0.5 ~ 1.5 m·s⁻¹;7 月黄海、南海风速 CSCAT 比 ASCAT-A 大 1.0~1.5 m·s⁻¹。与图 1 2021 年 1、7 月风速 CSCAT 大于 ASCAT-A 一致。

Fig.9 Distribution of mean wind speed difference between those retrieved by CSCAT and ASCAT-A in January and July 2021

4 结论

通过进行 2019—2022 年 CFOSAT 和 MetOp 卫 星反演风速在不同质量标识分类下的对比分析,得 到如下结论:

(1)按照同期在轨卫星间 50 km、前后 30 min 的时空窗口,CSCAT 分别与 ASCAT-A/B/C 卫星轨 道海面风数据进行交叉配对,发现在中国近海及太 平洋范围内 ASCAT-A 和 CSCAT 匹配样本较多, ASCAT-B/C 和 CSCAT 在中国近海区域匹配样本较 少,多集中在中高纬度。

 (2) 剔除陆地覆盖和降水影响后, CSCAT 与 ASCAT-A/B/C 的各月反演风速相关性均有所提高, RMSE 减小; CSCAT 与 ASCAT-A 的各月风速相关系 数为 0.94~0.97, RMSE 为 0.82~1.89 m·s⁻¹。

(3)2 m·s⁻¹以下的低风速段,CSCAT 比 ASCAT-A/B/C 大 30%~70%;2~21 m·s⁻¹风速段 CSCAT 比 ASCAT-A 小 0~5%;22 m·s⁻¹ 以上 CSCAT 比 ASCAT-A 小 10% 左右。对于 ASCAT-B/C 而言, 2~3 m·s⁻¹风速段 CSCAT 较 ASCAT-B/C 大 3%~ 30%,4~17 m·s⁻¹风速段 CSCAT 比 ASCAT-B/C 小 2%~10%,与图 1 相吻合。由此可见,通过交叉验证 可以很好地揭示卫星间风速的差异。

(4)中国近海 CSCAT 与 ASCAT-A 同期风速分

布态基本一致,2021 年整体而言 CSCAT 风速大于 ASCAT-A,其中 1 月东海、南海、菲律宾及以东海 域 CSCAT 比 ASCAT-A 大 0.5~1.5 m·s⁻¹,7 月黄 海、南海 CSCAT 比 ASCAT-A 大 1.0~1.5 m·s⁻¹。 与图 1 中 2021 年 1、7 月风速 CSCAT 大于 ASCAT-A 一致。

参考文献:

- [1] 张毅,蒋兴伟,林明森,等.星载微波散射计的研究现状 及发展趋势[J].遥感信息,2009,24(6):87-94.
- [2] WENTZ F J, RICCIARDULLI L, RODRIGUEZ E, et al. Evaluating and extending the ocean wind climate data record[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2017,10(5):2165-2185.
- [3] 林文明,郎姝燕,赵晓康,等.中法海洋卫星散射计近海 岸海面风场反演研究[J].海洋学报,2021,43(10): 115-123.
- [4] 田光辉,刘少军,李伟光,等. ASCAT 风场在南海的 适用性分析[J].广东气象,2020,42(5):39-43.
- [5] VERHOEF A, STOFFELEN A. Validation of ASCAT 12.5-km winds [EB/OL]. (2013-05) [2024-07-09]. https://knmi-scatterometer-website-prd.s3-eu-west-1.amazonaws. com/publications/validation_of_ascat_12.5 km_winds_1.3.pdf.
- [6] 张增海,曹越男,刘涛,等.ASCAT 散射计风场在我国近海的初步检验与应用[J].气象,2014,40(4):473-481.
- [7] 李玉,高理,张秀芝,等.QuikSCAT 与 ASCAT-A 卫星海 面风在中国近海风电规划区的差异[J].船舶工程, 2022,44(增刊1):140-146.
- [8] 高留喜,朱蓉,常蕊.QuikSCAT 和 ASCAT 卫星反演
 风场在中国南海北部的适用性研究[J].气象,2014,40
 (10):1240-1247.
- [9] 林溢园,邹巨洪,林明森,等.多源星载微波散射计海面风场信息融合研究[J].遥感技术与应用,2017,32
 (1):126-132.
- [10] YU L S, JIN X Z. Insights on the OAFlux ocean surface vector wind analysis merged from scatterometers and passive microwave radiometers (1987 onward) [J]. J Geophys Res: Oceans, 2014, 119(8):5244-5269.
- [11] 汪栋,张杰,范陈清,等.两种 ASCAT 散射计风产品的 比较及评估[J].海洋科学,2016,40(4):108-115.

- [12] 姚日升,涂小萍,丁烨毅,等.华东沿海 ASCAT 反演 风速的检验和订正[J].应用气象学报,2015,26(6): 735-742.
- [13] 张增海,曲荣强,刘涛,等.环渤海海域卫星反演风与站 点观测风对比分析[J].海洋气象学报,2018,38(3): 30-38.
- [14] 陈春涛,李军,朱建华,等.时空窗口对 HY-2 有效波高 产品检验影响模拟研究[J].海洋技术学报,2015,34
 (5):31-36.
- [15] 孙莎莎,孙艺,郭俊建,等.ASCAT 近岸风在山东沿海 的适用性分析[J].海洋气象学报,2017,37(2):90-95.
- [16] ZIEGER S, VINOTH J, YOUNG I R. Joint calibration of multiplatform altimeter measurements of wind speed and wave height over the past 20 years [J]. J Atmos Oceanic Technol, 2009, 26(12):2549-2564.
- [17] RAY R D, BECKLEY B D. Calibration of ocean wave measurements by the TOPEX, Jason-1, and Jason-2 satellites[J]. Mar Geod, 2012, 35(s1):238-257.
- [18] QUEFFEULOU P. Long-term validation of wave height measurements from altimeters [J]. Mar Geod, 2004, 27 (3/4):495-510.
- [19] QUEFFEULOU P. Validation of ENVISAT RA-2 and JASON-1 altimeter wind and wave measurements [C]// Proceedings of IEEE International Geoscience & Remote Sensing Symposium. Seoul, Korea: IEEE, 2005:2987-2989.
- [20] 冯耀煌.非线性稳健回归在天气预报中的应用[J]. 气象,1990,16(5):15-19.
- [21] 樊利利.变形广义极值分布的参数估计及实例分析 [J].首都师范大学学报(自然科学版),2016,37(6): 18-24.
- [22] 王康宁,林路.空间非参回归的变量选择[J].中国 科学:数学,2016,46(3):301-320.
- [23] 周钰淇,崔佳乐,孙博雯,等."21世纪海上丝绸之路"
 风能资源时空变化评估[J].海洋气象学报,2022,42(4):11-21.
- [24] 陈冠宇, 艾未华, 程玉鑫, 等. 基于星载 SAR 数据和 模式资料的海面风场变分融合方法研究[J].海洋气象 学报,2017,37(4):65-74.
- [25] 中国气象局国家气象中心.中国内海及毗邻海域海洋 气候图集[M].北京:气象出版社,1995:21-81.